Generation X

Attitude Control Systems (ACS)

Aprille Ericsson
Dave Olney
Josephine San

July 27, 2000

ACS Overview

- ◆ Requirements
- ◆ Assumptions
- ◆ Disturbance Torque Assessment
- ◆ Component and Control Mode Recommendations
- ♦ Major ACS Issues and Concerns
- ◆ Recommended Trade Studies
- ♦ Risk Assessment

ACS Requirements

◆ Pointing Requirements

Boresight Pointing Accuracy: < 1 arc-second

• Boresight Pointing Knowledge: 0.5 arc-sec

• Drift or jitter: < 1 arc-sec/minute

ACS Assumptions

◆ Coordinate System: origin at center of mass

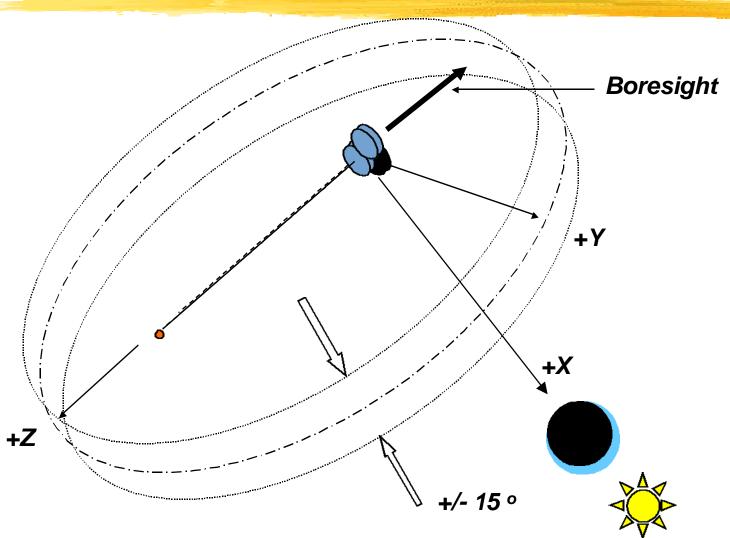
X toward sun, Y transverse, +Z toward detector

♦ Moments of Inertia (kg-m²)

♦		Stowed	Deployed
♦	X	13320	680000
♦	Υ	13320	680000
♦	Z	22500	22500

♦ Effective Area 30 m²

♦ Low-earth Orbit: altitude = 400 km, Inclination: = 51 degree


♦ Science Orbit: L2

◆ Science Attitude +X pointed near the sun. Boresight pointing

♦ restricted to 0.0 +/- 15 deg from the sun.

Attitude Geometry

ACS Disturbance Torque Assessment

◆ Gravity Gradient Torque at LEO:

With Boom stowed: 0.017 Nm

With Boom Deployed: 1.200 Nm

• (at L2 gravity gradient is negligible)

◆ Aerodynamic Torque at LEO:

• With Boom stowed: 0.012 Nm

• With Boom Deployed: 0.292 Nm

◆ Solar Pressure at L2

• Torque:

With Boom stowed:
 With Boom Deployed:
 1.4 x 10⁻⁶ Nm
 1.0 x 10⁻³ Nm

• Momentum buildup per day:

With Boom stowed: 0.12 NmsWith Boom Deployed: 86.5 Nms

ACS Component Recommendation

					Power	Power
			Cost	Mass	Orbit Avg	Peak
Components	Model	Quantity	(\$K)	(Kg)	(W)	(W)
ACE	(Based on Map)	2	2000	16	22	26
Coarse Sun Sensor	Adcole 11866	8	48	0.0368	0	0
Digital Sun Sensor	Smex lite, 40560	2	400	1.76	1.4	1.4
I RU	Litton SIRU	1	1000	5.44	22	40
Star Tracker	CT-602	2	13000	11.804	0	10
Reaction Wheel	Explorer, in house	4	1600	70.92	28	440
		Total =	18048	105.961	73.4	517.4

- ♦ Based on current technology meeting mission requirements
- ◆ Future technology should enhance performance

ACS Component Placement

- Wheel should be located as close to the center of mass as possible to reduce wheel induced jitter
- ◆ Four wheels can be arranged in a pyramid to provide "boosted" torque in the major slewing axis as well as redundancy.
- ♦ Star tracker and gyros should all rigidly mounted with respect to the critical alignment surface.

ACS Control Mode Recommendation

- ◆ Rate null/Sun acquisition Null the rate and point solar array normal to the sun.
- ◆ Delta H mode Perform delta H to unload wheel momentum
- ◆ Delta V mode Slew to burn position and perform delta V
- ◆ Science mode 3-axis stabilized with boresight axis (Z) perpendicular to sun-spacecraft line (ecliptic plane) +/- 15 degrees, use reaction wheels for slewing and pointing.
- ◆ Safehold mode Use CSS and wheel to point solar array normal to the sun, similar to sun acquisition

ACS Issues and Concerns

- ◆ Boom bending due to thermal loads and vibration.
- ◆ Non-collocated actuator and sensor in the pointing loop can be a source of instability, e.g., Sensing at the detector while moving the optics.
- ◆ Rotation of the entire spacecraft about the Z axis is directionally unstable in the presence of energy sinks.
- ♦ Symmetry of X and Y axis moment-of-inertia should be maintained to prevent oscillatory motion around Pitch axis.

ACS Options Considered

- Spinning the optics for thermal stability was considered
 - The large moment-of-inertia of the optics and an acceptable spin rate for thermal stability leads to an angular momentum too large for target-to-target maneuvering with wheels.
 - A large counter-rotating mass is a possible solution keeping the spacecraft zero momentum biased.

ACS Recommendations for Future Study

- ◆ Detector on boom or separate spacecraft for detector
- ♦ Worse case two axis slews
- ♦ New technology wheel larger rotor inertia and small dynamic and static imbalance

ACS Risk Assessment

- ◆ Boom length adds complexity to mission
 - Solar pressure torques
 - Torsional bending
 - Non-collocated sensors and actuators
 - Interference of control bandwidths (0.1-0.05 Hz) and structural modes (~0.2 Hz)
- ◆ If Dual Spin utilized can create instability